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Heat capacity in a model polydisperse ferrofluid with narrow particle size distribution
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The influence of polydispersity on the phase equilibrium properties and the heat capacity of a dipolar system
with additional short-rangérepulsive +attractiveinteractions(modeled by a shifted Lennard-Jones pair po-
tential) is studied by means of a Monte Carlo scheme. The particle distribution of the investigated system is
realized in the semigrand ensemble by tuning appropriately the underlying particle distribution density. The
phase coexistence and heat capacity data are calculated with and without an applied magnetic field, and the
obtained results are compared with the data determined in a monodisperse equivalent of the system.
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I. INTRODUCTION tion [15-17. For systems with fixed polydispersity, such as

Ferrofluids or magnetic fluids are stable colloidal disper-€rrofluids (where the particle distribution is set when creat-
sions of nanometric magnetic particles coated with ionidnd the syster) methods has been recently developed within
groups or polymer surfactants in liquid carri¢ts. Since the @ grand canonical framewof8,19 to overcome the diffi-
constituent nanoparticles can interact easily with externafulty associated with the need to determine the form of the
magnetic fields, and the ferrofluid properties can be effecunderlying (sampling distribution for which the ensemble
tively controlled by these fields, ferrofluids have a wide averaged particle distribution matches the target particle dis-
range of potential applications. These nearly spherical nandtibution.
particles possess permanent magnetic dipole moments, In this paper, our main concern is the influence of fixed
which are proportional to their volumes. Therefore, in addi-polydispersity on the heat capacity of a dipolar system ex-
tion to the usual spherically symmetric interactions, van dehibiting a fluid-fluid phase transition. Phase coexistence is
Waals attractions and electrostatic or steric repulsions, longdetermined in a dipolar system with reduced polydispersity,
range dipolar particle interactions play a key role in the therand isochoric heat capacities are calculated in the dense and
modynamic properties of ferrofluids. When studying theo-in the diluted phases. Using a simple scheme a quasicontinu-
retically ferrofluids thermodynamics, especially the Ous particle distribution is realized in the simulations. The
equilibrium magnetization and phase transitions, these fluidgbtained results are compared with the data determined in a
are generally treated as dipolar fluids, where only the colloimonodisperse equivalent of the system. In this work, a rela-
dal particles are explicitly taken into accoy@t11]. tively small degree of polydispersity is adopted with the in-

An inherent feature of real ferrofluids is that the nanopar-tention of obtaining phase diagrams as similar as possible for
ticles differ in size and magnetic moment. This polydisper-the polydisperse and monodisperse systems, in order that the
sity affects the equation of state of the system and may haweingle phases of the polydisperse and monodisperse systems
important consequence for the phase behavior, in particuld¥e in nearly “corresponding states” at the same densities.
for the fluid-fluid coexistencgl2,13. This property also af-
fects the equilibrium magnetization for dense as well as for Il. METHOD
diluted liquids. Recently, the influence of realistic polydis- A. Model
persity on the equilibrium magnetization properties of model
ferrofluids was investigated by simulation, and it was found
that the magnetization is generally higher in the polydispers
system than in its monodisperse equivalgat]. Such simu-
lation studies generally operate with a discretization of th
particle distribution, reducing the number of components to
small value. A more sophisticated approach involves em- . o |12 o \6
ploying the semigrand ensemble: this technique allows simu- @ =4e —J—r__ iy - (—J—r__ - 1)
lations with quasicontinuous particle distributions and thus ! L
finite-size effects become insignificant in such calculationswheree is the energy parameter, is the interparticle dis-
However, this technique was originally restricted to systemsance,o;;=(0;+07)/2, and{ is an additional size parameter.
with variable polydispersity, i.e., to systems where the formShifting in the distance scale allows a crude approximation
of the particle distribution also depends on the thermodyto take into account the fact that, due to the presence of
namic conditions, because the particle distribution is constabilizing nonmagnetic layers, the particle size in ferrofluids
trolled by the imposed chemical potential difference distribu-exceeds the magnetic core diameter

The system consists of spherical particles of diameter
hich have permanent point dipolagneti¢ momentsm,.
he short-range repulsive interaction and the van der Waals
attraction between particlesandj are modeled by a shifted
j‘_ennard-Jones pair potential:
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The dipole-dipole potential between particlesind j is  intervals(“bins”). At regular simulation intervals, the histo-
given by gram approximation of ,(x) is adjusted bin by bin: for each
entry x;, its value is increased by 5% f(x)<f(x), and
3 , 2) decreased by 5% if(x) <f.(x), and its value is kept un-
Ampol T ] changed iff (x) agrees withf(x) within 0.1%. Heref.(x) is
where u, is the permeability of vacuum, and the interaction taken from a limited number of configurations immediately

of dipole moments with an external magnetic fieldcan be ~ Preceding the adjustment steghis procedure is similar to
written as that followed frequently in conventional Monte Carlo simu-

lations for tuning the maximum allowed displacement of par-
qoieXt: -m;-H. (3) ticles to get a desired acceptance ra2@]). Finally, after
In our previous papef13], we obtained a much narrower considgring all of the entries _in the a_djustmer_‘lt step, the new
fluid-fluid coexistence en\,/elope for this shifted StockmayerapprOXImatlon of the underlying particle distribution density
e . is renormalized appropriately. The imposed small value for
model than for the original Stockmayer modél. The in- the adjustment parametés%) ensures that a change at any

It|r oditéctlro]g Orf thte ra\?d't'?réalns'ﬁf pararuetﬁameld? 3vm?”?irti Fntry only very slightly affects.(x) at other entries in the
quid and greater vapor densilies, as wetl as a lower ¢ Casubsequent simulation interval.

1 |mj-m; m; - ri)(mj-ry
(Pﬁz i ]_3( i Ij)g j IJ)

temperature. ; ; . . .
The particle polydispersity is described by the gamma dis- Tuning f,(x) in this manner V|olat.es detailed pqlange.
tribution [20] Ne\_/ertheless, vyhen e_mploymg a relatlyely I_ong equ_|I|brat|on
period in the simulations, the fluctuations in the histogram
L x\2 exp(—x/X) approximation off ,(x) become small and the production run

f(x) = X_o(x_o m’ (4) is completed with areffectivelyunchangingf(x). Alterna-

tively we can take the “ensemble averaged” underlying par-
wherex is the magnetic core diameter of particlgganda ticle distribution density as the input of a normal semigrand
are the parameters of the distributidhdenotes the gamma ensemble simulation. This can be done also in the case of the
function, and{ is taken as the unit lengtfto renderf(x) two-phase simulations.
dimensionlesk For spherical particlesy=x, and the mag-

netic moment reads C. Computational details

In the calculationsN=500 (one-phase simulatiopsand
1000 (two-phase simulationgparticles were employed. The
production period of the simulations varied between 400
wh(_areMd represents the bulk magnetization of the ferromag-x 106 and 600x 10° trial moves. The frequency of attempt-
netic component. ing resizing moves was equal to that of the translational and
orientational moves and, likewise, the acceptance criterion of
the resizing moves was the same as that used for the trans-
lational and orientational movg45].

One- and two-phase constant volume and temperature Standard long-range corrections were applied for the
Monte Carlo calculations have been performed using thé.ennard-Jones-type interaction assuming that the pair corre-
above model. In addition to the usual translational and orilation functions are unity beyond the cutoff rad{iz2]. The
entational moves of the particlésne-phase canonical simu- long-range dipolar interactions were treated using the Ewald
lationg as well as volume and particle transfer moygo- ~ summation with conducting boundary conditi28]: in this
phase Gibbs ensemblgl] simulations, resizing moves case the applied external field is identical to the internal field
were also invoked to realize a size distribution of particles inacting on particles throughout the simulation box.
the system. The results for the dipolaimagneti¢ fluids are presented

The procedure we constructed to produce appropriate diga reduced units, where the mean magnetic core diameser
tribution functions for the trial moves responsible for gener-used fora: T =kT/¢ is the reduced temperature witbeing
ating the possible configurations of particle sizes is the folthe Boltzmann constanp’=No®/V is the reduced density,
lowing. p'=pci/e is the reduced pressure,=U/(eN) is the re-

We started from a semigrand ensemble scheme that opeduced potential energy, aru{],:CV/(kN):(au*/aT*)V is the
ates with resizing moves by sampling from a fixed underly-dimensionless form of the configurational isochoric heat ca-
ing particle distribution density,(x) (this is equivalent to pacity. Furthermore, the dimensionless forms of the magne-
sampling by means of a chemical potential difference distritization _and the external _magnetic field aré/”
bution) [16,17. In our case, howevef,(x) is dynamically =M/ 4me/(ueo®) andH" =Hy4muy0°/ e, respectively, and
updated during the simulation in such a way as to minimizem?=n?/(4mwueec®) is the reduced squared magnetic mo-
the deviation of the instantaneous particle distribution denment. For the magnetic coupling=m/T =1 was adopted
sity f.(x) from the target distribution densitf(x). As an  at T"=1. This choice implies that the average reduced mag-
initial guess, eitheff,(x)=f(x) is set, orf,(x) is taken from  netic moment wasinity in all calculations.
the output of a previous run. The distributions are stored in In the simulations the equilibrium magnetization can be
the form of a histogram with a prescribed number of sub-obtained from the expression

o
m= /.LongX3y (5)

B. Monte Carlo algorithm
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Ax) D. Exploring the phase space

0.3 The phase coexistence was studied at fixed number den-
sities of the startindparenj phase. This corresponds to the

0.2 experimental procedure that involves adding a prescribed
quantity of particles with a given degree of polydispersity to

014 a vessel of fixed volume and observing possible phase sepa-
rations. In this manner, two-phase separations occur with

00 fixed global particle distribution density but, naturally, the

T 5 6 7 8 9101 12 distribution densities of the coexisting phases differ from that

e of the parent phase. This study was restricted only to the
fluid phases; it is known that magnetic fluids exhibit vapor-
FIG. 1. The applied particle distribution density for the polydis- liquid-like phase separation, i.e., coexistence of a dense lig-
perse system. Data points show the measured distribution in ongrg phase with a diluted liquid phase.

phase simulation & =1.05 andp’=0.44, and the continuous line  Theoretically(i.e., disregarding finite-size effects in the

indicates the target distribution. simulations, phase coexistence results can be obtained up to
the temperature for which the density of either phase be-
1/8 0 comes equal to the density of the parent phase. At this end
M=—(> —), (6) point of phase equilibrium, called the cloud point, the
Mo \iz1 V amount of the other coexisting phase is negligible. The co-

existence density curves meet at the critical temperalyre

only if the density of the parent phase is equal to the critical
where the brackets denote the ensemble average. The cotensityp.. Accordingly, the critical point for this system can
figurational isochoric heat capacity was determined frombe determined solely by an iterative procedure. First, a
one-phase simulations in two ways: for the monodispers@seudocritical density is estimated for a selected density of
system, directly from the fluctuations of the potential energythe parent phasgafjo) using the Gibbs ensemble simulation
(kT?Cy=(U?»-(U)?») and, for the polydisperse system, results at various temperatures up to the end point. Assuming
through temperature differentiation of a fit to the averagea Wegner expansiofi24] and neglecting the contribution
potential energy data obtained at four distinct temperaturefom the gap exponeii25], the denséL) and the dilutedV)
close to the target temperatu@ a given density Utilizing phase densities can be fitted to the expression
the second method, several results for the monodisperse sys-
tem were cross-checked.

To achieve a relatively narrow distributiox,/ {=0.2 and

a=39 were taken, and the unit length was set to 1[d6].

This gamma distribution reproduces the peak height and thghereB andC are parameters an@lis the critical exponent
peak width at half maximum of a norméBaussiandistri-  \yhjch is set to its exact nonclassical value 0.325. The coex-
bution withx=7.8 nm ands/x=0.16(wheres is the standard istence curves are then determinedffﬁ?:p(o) and the pro-
deviation, but it has a slower decay in the range of large ; (n) AT S

. ’ ! R edure is repeated un agrees witl within the un-
diameters. We truncated the particle distribution at 4 anci P W(C 9 oo

. ertainty of the calculation. It should be noted that the
12 nm, wheref(x) is already well below 0.005. Nonetheless, obtained critical points are approximate in the sense that they

this truncation leads to a decrease of the original mean corg e getermined without performing a finite-size scaling study.
diameter,x=xg(a+1)=8 nm, by 0.4%. The histogram dis-

o . X _ . Having located the critical point, a rough estimation of the
cretization parametdthe width of the particle size subinter- ¢j5yq curves in the low- and high-density sides of the critical
vals or bing was set to 0.2 nm. coexistence envelope was performed. Since outside the cloud
According to our experience, it was unnecessary t0 Pezurve only single phases are stable, the density of the parent
form normal semigrand ensemble simulations with “en-phase was gradually increased at constant temperature until
semble averaged _underlymg particle d|str|bu'qon de_nS|ty aShe termination of phase coexistence was obseftreglow-
we chr—;cked th.at, in the present case, the simulations W'tHensity phase disappeajedihe density of the cloud point in
dynamically adjusted,(x) yield the same results both for the e high-density side was determined by extrapolation taking
structure and thermodynamics. The sole difficulty withinto account some finite size effects. Gradually decreasing

implementing the original procedure at higher densities waghe density of the parent phase, the cloud point in the low-
that the measured distribution failed to fully match the valuegjensity side was estimated in a similar way.

in the “wings” of f(x). To cure this problem, in those ranges

of diameters for whichf(x) is very small the adjustment

parameter was set proportional to the relative deviation of [ll. RESULTS AND DISCUSSION

f.(x) from f(x) allowing this parameter to vary up to a maxi-

mum slightly increased from 5%. Figure 1 illustrates the We compare the fluid-fluid coexistence results of our
good agreement between the target particle distribution anpgolydisperse system with those of a monodisperse system.
that obtained in the simulations. The monodiperse fluid is characterized by unifasnandm,

pLv=pctB(L-TITYP+C(1-TITy), (7

031109-3



KRISTOF, LISZI, AND SZALAI

PHYSICAL REVIEW E 71, 031109(2005

*

T* Cy B Cy
1.20 20 . o
@ 9
1.151 4 e ... L
1.5 o ‘,”IEI,Q gl?m:::\ 'l.OS ] 1.5
1.10 Iy W% o g s L
1.0 zg £ 5,:0/ 8-g ﬂi En:.:i::‘.:::z:‘.::s 1.0
105+ 0.5 g%'a/gf" L0.5
1.00+ 0.0 ——————T—— 71— 0.0
003 006 P 0.02 0.06 010 . 040 044 048
0.95

0.0 011 012 *0{3 0{4 015 ] ) - ]
p FIG. 3. Configurational heat capacities for the monodisperse
) . ) (circles and for the polydisperse fluiggquares Open symbols and
_ FllG. 2.dC(;JeX|sdte|pce dednfsme?1 for ’[lhz_monodlﬁp%rsfe I]I]JE h symbols filled with(+) represent results obtained ldt=0 and 1,
(circles and dotted lingsand for the polydisperse fluid for whic respectively. Points corresponding T6=1.00, 1.05, and 1.10 are

the density of the parent phase is ide_nktical to the critical OIenSityconnected by dotted, continuous, and dashed lines, respectively.
(squares and dashed linek both casesn =1. Open symbols and

symbols filled with(+) represent results obtained ldt=0 and 1,
respectively. The continuous lines are the estimated cloud curves:
the two inner lines correspond to the results obtained in the absendgetween the coexisting dense and diluted fluid phases. At the
of the external field. The inset contains the heat of phase change aame time, the upward shift of the critical point is consistent
a function of the coexistence pressure. State points where heat c@jith those obtained earlidd3,17]. Also, the broadening of
pqcities were calculated from one-phase simulations are markeghe coexistence region of the polydisperse system with the
with crosses. field strength is expectefl3]. The difference between the
polydisperse system and its monodisperse counterpart looks
more pronounced when considering the heat of phase change
with the additional specification that'=1. Due to the fact Q" [Q"=Au"+p"A(1/p"), whereA refers to the change upon
thatmeex® and x®# 3 for the polydisperse fluid, the mono- phase transitioh The distributions of particles in the coex-
disperse fluid can be considered to have either a differeristing polydisperse phases were found to be significantly dif-
mean core diameter or different bulk magnetizatiog., dif-  ferent: the larger particles predominantly belong to the
ferent ferromagnetic componerthan those of the polydis- denser phase, and this causes an enlargement in the potential
perse fluid. As the choice af is arbitrary to some degree, energy change associated with the phase transition. In our
the equivalent monodisperse system might be the one witBase, the distribution of the denser phase generally resembles
the same volume fraction of the magnetic cores as the polythe distribution of the parent phase; however, the closer we
disperse systenat the same number densityrhis means  gre tg the critical temperature, the more the distribution of
that, instead of the mean core diameter, the mean cubed Cofigs jenser phase differs from the parent distribution. This is
diameter would be identical for the two systems. Neverthey,o reason the estimated cloud curve, the distribution of

less, this choice does not affect our numerical results P'&uhich is by definition equal to the parent distribution, may

sent_ed in reduced units. . . cross the critical orthobaric density curve even in the high-
Figure 2 shows that the widths of the coexistence enveaensity side

lopes of the monodisperse system are more or less similar 10 o .
P b y It should be noted that while in the monodisperse phases

those of the polydisperse system for which the density of the ) ) i i 0
parent phase is identical to the critical densttye results for practically no particle aggregation occurs, approximately 1%

the monodisperse system are taken from our previous work
[13]). In contrast with our earlier findings with a medium
degree of polydispersity13], the introduction of this re-
duced polydispersity slightly increases the density difference

M* 1102 M
0.03 /,"” 0.3
LAy ]
TABLE |. Estimated critical properties for the monodisperse 0.02- Le3p f:x" ettt
fluid [13] and for the polydisperse fluid@n both casesm” =1). The Lol ® o-®"
numbers in parentheses represent the estimated uncertainties in the 0014 Lo.1
last digit.
000 T T T T T T T 00
Monodisperse fluid Polydisperse fluid 0.02 0.06 010 . 040 044 0.48
H* T o T o FIG. 4. Magnetizations for the monodispernircles and for
¢ ¢ ¢ ¢ the polydisperse fluidsquares at H*=1. Points corresponding to
0 1.1515) 0.2294) 1.1965) 0.22713) T=1.00, 1.05, and 1.10 are connected by dotted, continuous, and
1 1.1705) 0.2274) 1.2235) 0.2234) dashed lines, respectively. Note that the two parts of the figure

differ in the scale of the axis.
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of the particles of the high-density polydisperse phases caties in the low-density sidép”=0.04 and 0.05where the
be found in clusters. These clusters were defined on the basissults obtained at different temperatures can be compared.
of the pair energies of the interacting particl@§]: two par-  Here, we find that the heat capacity of the monodisperse
ticles were considered to be bound if their potential energy isystem afl* =1.00 is approximately equal to that of the poly-
less than 75% of their contact energy in perfect coalignmenfgisperse system & =1.05, and the same holds for the re-
Although the clusters in the polydisperse phases are primasyits atT*=1.05 and 1.10, which means that the correspond-
rily flexible dimers and trimers, these might affect the fluid ing ¢, data are approximately equal for the two systems at
properties, especially the magnetic propert{@J], to & {he samel’/T, andp'/p, (recall thatT, is about 4% higher
greater extent. Nevertheless, the aggregation does not segi,e nolydisperse systenirhis rule does not work for the
z'r%g'ﬂg?gﬁ (I:rllus?[g:s prce)léllgclzsepse\r;i?h Sdfgferg' 'm%ree(i)r:/f?lz’e r?ti,se theF1igh-density side, where such a comparison reveals that, at
. singhe | the sameT /T, and p'/p,, the monodisperse system pos-
of clustering becomes completely negligible in the low- ¢ ; o .
density side. sesses greatey,. Th(_a fact that no polydlspersny—l_nduced in-
crease in this caloric property was found here is somewhat

The estimated critical properties are shown in Tabl'é;I. e ) . : ; 0
is slightly greater in the polydisperse system than in the corSU'Prising, since the potential energy is consistently 5-10 %

responding monodisperse one hyitis roughly the same in lower in the polydisperse systeftiese results are not shown
both systems. According to the principle of corresponding?€ré and the two systems are quite dissimilar also in mag-
states, a reduction with the critical properties would alsgnetic character. The latter is illustrated in Fig. 4, where the
make sense; for the polydisperse system, this will lower th&alculated equilibrium magnetization is shown in the pres-
reduced temperatures by approximately 4% as compared g1ce of the external magnetic fiell is practically zero in
those of the monodisperse system. the absence of the external field in all C3sAs can be seen, |
The locations of state points where the heat capacitie}! is significantly greater in the polydisperse system than in
were determined are indicated in Fig.(®e selected tem- the monodisperse one, especially in the high-density side,
peratures ar@ =1.00, 1.05, and 1.20Here, in the inset we which suggests that the contribution of the pa_rticles with
plotted the heat of phase change as a function of the coedagnetic moments larger than the mean magnetic moment to
istence pressuréinstead of the temperatyréo present our ~the system’s properties is crucial. _ _
results also for the pressure. So this “composite” figure also N summary, we considered the effect of polydispersity on
reveals that, at the three selected temperatures, the coexidte phase behavior and the isochoric heat capacity data of a
ence pressure is roughly the same for the polydisperse sygiodel ferrofiuid with reduced polydispersity. The obtained
tem and for its monodisperse counterpart. For the heat cdluid-fluid equilibrium curves reflect the dissimilarity in com-
pacity calculations the densities were chosen near thBOSition and thus in structure between the polydisperse sys-
orthobaric density curves. Some points areside the tem and its monodisperse counterpart. At the same time, the
orthobaric density or the cloud curves, but on the basis of th8€at capacity was found to be rather insensitive to the com-
increasing tendency of the pressure with the increasing derRosition variations in the denser phase. Nevertheless, the cal-
sity obtained from one-phase simulations at constant tenfulations provide evidence of the large influence of the ex-
perature, it was verified for both systems that all of thesd®rmnal magnetic field on the temperature derivative of the
points areoutsidethe spinodal curvegwhere the phase first Potential energy of our dipolar systems. N
becomes unstable to local density fluctuatjons The proposed technique has proved to be a promising tool
The heat capacity results from one-phase simulations a®r simulating systems with fixed polydispersity. It should be
presented in Fig. 3. It is seen that the configurational headtressed that its implementation is simple and straightfor-
capacity reduces on passing frdihe vicinity of) the two- Waro_l, and requires only a minor mod|f|cat|qn of the original
phase region toward the interior of the single phase regiongemigrand ensemble procedure. In comparison with the more
The most striking feature of this figure is the marked contrasgophisticated grand canonical approgt®,28, where a self-
between the results obtained in the absence and in the pregansistent iterative determination of the chemical potential
ence of the external field. Under the influence of the externaflistribution (conjugate to the composition distributioits
field, the relative increase in the temperature derivative of th@erformed, the new technique works with fixed overall num-
potential energy may be as large as 60%. The absolute ifer density, which makes it easier to handle the system in
crease was found to be approximately equivalent to the lowone-phase simulations. Notwithstanding these advantages,
ering in the potential energgin reduced units, according to the work presented here was computationally demanding,
the definitions given in Sec. I1)Cthis is larger in the high- because rather long calculations are needed to sample appro-
density side, which reflects the fact that the interaction of &riately the low-probability particle size regions.
system of dipoles with the external field is proportional to
the density[14,27].

In the high-density side no clear distinction can be ob- ACKNOWLEDGMENTS
served between the results for the polydisperse system and
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