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The influence of polydispersity on the phase equilibrium properties and the heat capacity of a dipolar system
with additional short-rangesrepulsive+attractived interactionssmodeled by a shifted Lennard-Jones pair po-
tentiald is studied by means of a Monte Carlo scheme. The particle distribution of the investigated system is
realized in the semigrand ensemble by tuning appropriately the underlying particle distribution density. The
phase coexistence and heat capacity data are calculated with and without an applied magnetic field, and the
obtained results are compared with the data determined in a monodisperse equivalent of the system.
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I. INTRODUCTION

Ferrofluids or magnetic fluids are stable colloidal disper-
sions of nanometric magnetic particles coated with ionic
groups or polymer surfactants in liquid carriersf1g. Since the
constituent nanoparticles can interact easily with external
magnetic fields, and the ferrofluid properties can be effec-
tively controlled by these fields, ferrofluids have a wide
range of potential applications. These nearly spherical nano-
particles possess permanent magnetic dipole moments,
which are proportional to their volumes. Therefore, in addi-
tion to the usual spherically symmetric interactions, van der
Waals attractions and electrostatic or steric repulsions, long-
range dipolar particle interactions play a key role in the ther-
modynamic properties of ferrofluids. When studying theo-
retically ferrofluids thermodynamics, especially the
equilibrium magnetization and phase transitions, these fluids
are generally treated as dipolar fluids, where only the colloi-
dal particles are explicitly taken into accountf2–11g.

An inherent feature of real ferrofluids is that the nanopar-
ticles differ in size and magnetic moment. This polydisper-
sity affects the equation of state of the system and may have
important consequence for the phase behavior, in particular
for the fluid-fluid coexistencef12,13g. This property also af-
fects the equilibrium magnetization for dense as well as for
diluted liquids. Recently, the influence of realistic polydis-
persity on the equilibrium magnetization properties of model
ferrofluids was investigated by simulation, and it was found
that the magnetization is generally higher in the polydisperse
system than in its monodisperse equivalentf14g. Such simu-
lation studies generally operate with a discretization of the
particle distribution, reducing the number of components to a
small value. A more sophisticated approach involves em-
ploying the semigrand ensemble: this technique allows simu-
lations with quasicontinuous particle distributions and thus
finite-size effects become insignificant in such calculations.
However, this technique was originally restricted to systems
with variable polydispersity, i.e., to systems where the form
of the particle distribution also depends on the thermody-
namic conditions, because the particle distribution is con-
trolled by the imposed chemical potential difference distribu-

tion f15–17g. For systems with fixed polydispersity, such as
ferrofluids swhere the particle distribution is set when creat-
ing the systemd, methods has been recently developed within
a grand canonical frameworkf18,19g to overcome the diffi-
culty associated with the need to determine the form of the
underlying ssamplingd distribution for which the ensemble
averaged particle distribution matches the target particle dis-
tribution.

In this paper, our main concern is the influence of fixed
polydispersity on the heat capacity of a dipolar system ex-
hibiting a fluid-fluid phase transition. Phase coexistence is
determined in a dipolar system with reduced polydispersity,
and isochoric heat capacities are calculated in the dense and
in the diluted phases. Using a simple scheme a quasicontinu-
ous particle distribution is realized in the simulations. The
obtained results are compared with the data determined in a
monodisperse equivalent of the system. In this work, a rela-
tively small degree of polydispersity is adopted with the in-
tention of obtaining phase diagrams as similar as possible for
the polydisperse and monodisperse systems, in order that the
single phases of the polydisperse and monodisperse systems
be in nearly “corresponding states” at the same densities.

II. METHOD

A. Model

The system consists of spherical particles of diametersi,
which have permanent point dipolesmagneticd momentsmi.
The short-range repulsive interaction and the van der Waals
attraction between particlesi and j are modeled by a shifted
Lennard-Jones pair potential:

wi j
r = 4«FS si j

r i j − z
D12

− S si j

r i j − z
D6G , s1d

where« is the energy parameter,r ij is the interparticle dis-
tance,si j =ssi +s jd /2, andz is an additional size parameter.
Shifting in the distance scale allows a crude approximation
to take into account the fact that, due to the presence of
stabilizing nonmagnetic layers, the particle size in ferrofluids
exceeds the magnetic core diametersi.
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The dipole-dipole potential between particlesi and j is
given by

wi j
d =

1

4pm0
Fmi ·m j

r i j
3 − 3

smi · r i jdsm j · r i jd
r ij

5 G , s2d

wherem0 is the permeability of vacuum, and the interaction
of dipole moments with an external magnetic fieldH can be
written as

wi
ext = − mi ·H . s3d

In our previous paperf13g, we obtained a much narrower
fluid-fluid coexistence envelope for this shifted Stockmayer
model than for the original Stockmayer modelf6g. The in-
troduction of the additional size parameterz yields smaller
liquid and greater vapor densities, as well as a lower critical
temperature.

The particle polydispersity is described by the gamma dis-
tribution f20g

fsxd =
z

x0
S x

x0
Da exps− x/x0d

Gsa + 1d
, s4d

wherex is the magnetic core diameter of particles,x0 anda
are the parameters of the distribution,G denotes the gamma
function, andz is taken as the unit lengthfto render fsxd
dimensionlessg. For spherical particles,s=x, and the mag-
netic moment reads

m= m0Md
p

6
x3, s5d

whereMd represents the bulk magnetization of the ferromag-
netic component.

B. Monte Carlo algorithm

One- and two-phase constant volume and temperature
Monte Carlo calculations have been performed using the
above model. In addition to the usual translational and ori-
entational moves of the particlessone-phase canonical simu-
lationsd as well as volume and particle transfer movesstwo-
phase Gibbs ensemblef21g simulationsd, resizing moves
were also invoked to realize a size distribution of particles in
the system.

The procedure we constructed to produce appropriate dis-
tribution functions for the trial moves responsible for gener-
ating the possible configurations of particle sizes is the fol-
lowing.

We started from a semigrand ensemble scheme that oper-
ates with resizing moves by sampling from a fixed underly-
ing particle distribution densityfusxd sthis is equivalent to
sampling by means of a chemical potential difference distri-
butiond f16,17g. In our case, however,fusxd is dynamically
updated during the simulation in such a way as to minimize
the deviation of the instantaneous particle distribution den-
sity fcsxd from the target distribution densityfsxd. As an
initial guess, eitherfusxd= fsxd is set, orfusxd is taken from
the output of a previous run. The distributions are stored in
the form of a histogram with a prescribed number of sub-

intervalss“bins”d. At regular simulation intervals, the histo-
gram approximation offusxd is adjusted bin by bin: for each
entry xi, its value is increased by 5% iffcsxid, fsxid, and
decreased by 5% iffsxid, fcsxid, and its value is kept un-
changed iffcsxd agrees withfsxd within 0.1%. Here,fcsxd is
taken from a limited number of configurations immediately
preceding the adjustment stepsthis procedure is similar to
that followed frequently in conventional Monte Carlo simu-
lations for tuning the maximum allowed displacement of par-
ticles to get a desired acceptance ratiof22gd. Finally, after
considering all of the entries in the adjustment step, the new
approximation of the underlying particle distribution density
is renormalized appropriately. The imposed small value for
the adjustment parameters5%d ensures that a change at any
entry only very slightly affectsfcsxd at other entries in the
subsequent simulation interval.

Tuning fusxd in this manner violates detailed balance.
Nevertheless, when employing a relatively long equilibration
period in the simulations, the fluctuations in the histogram
approximation offusxd become small and the production run
is completed with aneffectivelyunchangingfusxd. Alterna-
tively we can take the “ensemble averaged” underlying par-
ticle distribution density as the input of a normal semigrand
ensemble simulation. This can be done also in the case of the
two-phase simulations.

C. Computational details

In the calculationsN=500 sone-phase simulationsd and
1000 stwo-phase simulationsd particles were employed. The
production period of the simulations varied between 400
3106 and 6003106 trial moves. The frequency of attempt-
ing resizing moves was equal to that of the translational and
orientational moves and, likewise, the acceptance criterion of
the resizing moves was the same as that used for the trans-
lational and orientational movesf15g.

Standard long-range corrections were applied for the
Lennard-Jones-type interaction assuming that the pair corre-
lation functions are unity beyond the cutoff radiusf22g. The
long-range dipolar interactions were treated using the Ewald
summation with conducting boundary conditionf23g: in this
case the applied external field is identical to the internal field
acting on particles throughout the simulation box.

The results for the dipolarsmagneticd fluids are presented
in reduced units, where the mean magnetic core diameterx̄ is
used fors: T* =kT/« is the reduced temperature withk being
the Boltzmann constant,r* =Ns3/V is the reduced density,
p* =ps3/« is the reduced pressure,u* =U / s«Nd is the re-
duced potential energy, andcV

* =CV/ skNd=s]u* /]T*dV is the
dimensionless form of the configurational isochoric heat ca-
pacity. Furthermore, the dimensionless forms of the magne-
tization and the external magnetic field areM*

=M /Î4p« / sm0s3d andH* =HÎ4pm0s3/«, respectively, and
m*2 =m2/ s4pm0«s3d is the reduced squared magnetic mo-
ment. For the magnetic coupling,l=m*2 /T* =1 was adopted
at T* =1. This choice implies that the average reduced mag-
netic moment wasunity in all calculations.

In the simulations the equilibrium magnetization can be
obtained from the expression
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M =
1

m0
Ko

i=1

N
mi

V L , s6d

where the brackets denote the ensemble average. The con-
figurational isochoric heat capacity was determined from
one-phase simulations in two ways: for the monodisperse
system, directly from the fluctuations of the potential energy
skT2CV=kU2l−kUl2d and, for the polydisperse system,
through temperature differentiation of a fit to the average
potential energy data obtained at four distinct temperatures
close to the target temperaturesat a given densityd. Utilizing
the second method, several results for the monodisperse sys-
tem were cross-checked.

To achieve a relatively narrow distribution,x0/z=0.2 and
a=39 were taken, and the unit length was set to 1 nmf13g.
This gamma distribution reproduces the peak height and the
peak width at half maximum of a normalsGaussiand distri-
bution with x̄=7.8 nm ands/ x̄=0.16swheres is the standard
deviationd, but it has a slower decay in the range of large
diameters. We truncated the particle distribution at 4 and
12 nm, wherefsxd is already well below 0.005. Nonetheless,
this truncation leads to a decrease of the original mean core
diameter,x̄=x0sa+1d=8 nm, by 0.4%. The histogram dis-
cretization parametersthe width of the particle size subinter-
vals or binsd was set to 0.2 nm.

According to our experience, it was unnecessary to per-
form normal semigrand ensemble simulations with “en-
semble averaged” underlying particle distribution density as
we checked that, in the present case, the simulations with
dynamically adjustedfusxd yield the same results both for the
structure and thermodynamics. The sole difficulty with
implementing the original procedure at higher densities was
that the measured distribution failed to fully match the values
in the “wings” of fsxd. To cure this problem, in those ranges
of diameters for whichfsxd is very small the adjustment
parameter was set proportional to the relative deviation of
fcsxd from fsxd allowing this parameter to vary up to a maxi-
mum slightly increased from 5%. Figure 1 illustrates the
good agreement between the target particle distribution and
that obtained in the simulations.

D. Exploring the phase space

The phase coexistence was studied at fixed number den-
sities of the startingsparentd phase. This corresponds to the
experimental procedure that involves adding a prescribed
quantity of particles with a given degree of polydispersity to
a vessel of fixed volume and observing possible phase sepa-
rations. In this manner, two-phase separations occur with
fixed global particle distribution density but, naturally, the
distribution densities of the coexisting phases differ from that
of the parent phase. This study was restricted only to the
fluid phases; it is known that magnetic fluids exhibit vapor-
liquid-like phase separation, i.e., coexistence of a dense liq-
uid phase with a diluted liquid phase.

Theoretically si.e., disregarding finite-size effects in the
simulationsd, phase coexistence results can be obtained up to
the temperature for which the density of either phase be-
comes equal to the density of the parent phase. At this end
point of phase equilibrium, called the cloud point, the
amount of the other coexisting phase is negligible. The co-
existence density curves meet at the critical temperatureTc
only if the density of the parent phase is equal to the critical
densityrc. Accordingly, the critical point for this system can
be determined solely by an iterative procedure. First, a
pseudocritical density is estimated for a selected density of
the parent phaser0

s0d using the Gibbs ensemble simulation
results at various temperatures up to the end point. Assuming
a Wegner expansionf24g and neglecting the contribution
from the gap exponentf25g, the densesLd and the dilutedsVd
phase densities can be fitted to the expression

rL,V = rc ± Bs1 − T/Tcdb + Cs1 − T/Tcd, s7d

whereB andC are parameters andb is the critical exponent
which is set to its exact nonclassical value 0.325. The coex-
istence curves are then determined forr0

s1d=rc
s0d, and the pro-

cedure is repeated untilrc
snd agrees withr0

snd within the un-
certainty of the calculation. It should be noted that the
obtained critical points are approximate in the sense that they
are determined without performing a finite-size scaling study.

Having located the critical point, a rough estimation of the
cloud curves in the low- and high-density sides of the critical
coexistence envelope was performed. Since outside the cloud
curve only single phases are stable, the density of the parent
phase was gradually increased at constant temperature until
the termination of phase coexistence was observedsthe low-
density phase disappearedd. The density of the cloud point in
the high-density side was determined by extrapolation taking
into account some finite size effects. Gradually decreasing
the density of the parent phase, the cloud point in the low-
density side was estimated in a similar way.

III. RESULTS AND DISCUSSION

We compare the fluid-fluid coexistence results of our
polydisperse system with those of a monodisperse system.
The monodiperse fluid is characterized by uniforms andm,

FIG. 1. The applied particle distribution density for the polydis-
perse system. Data points show the measured distribution in one-
phase simulation atT* =1.05 andr* =0.44, and the continuous line
indicates the target distribution.

HEAT CAPACITY IN A MODEL POLYDISPERSE… PHYSICAL REVIEW E 71, 031109s2005d

031109-3



with the additional specification thatm* =1. Due to the fact
that m̄~x3 andx3Þ x̄3 for the polydisperse fluid, the mono-
disperse fluid can be considered to have either a different
mean core diameter or different bulk magnetizationsi.e., dif-
ferent ferromagnetic componentd than those of the polydis-
perse fluid. As the choice ofs is arbitrary to some degree,
the equivalent monodisperse system might be the one with
the same volume fraction of the magnetic cores as the poly-
disperse systemsat the same number densityd. This means
that, instead of the mean core diameter, the mean cubed core
diameter would be identical for the two systems. Neverthe-
less, this choice does not affect our numerical results pre-
sented in reduced units.

Figure 2 shows that the widths of the coexistence enve-
lopes of the monodisperse system are more or less similar to
those of the polydisperse system for which the density of the
parent phase is identical to the critical densitysthe results for
the monodisperse system are taken from our previous work
f13gd. In contrast with our earlier findings with a medium
degree of polydispersityf13g, the introduction of this re-
duced polydispersity slightly increases the density difference

between the coexisting dense and diluted fluid phases. At the
same time, the upward shift of the critical point is consistent
with those obtained earlierf13,17g. Also, the broadening of
the coexistence region of the polydisperse system with the
field strength is expectedf13g. The difference between the
polydisperse system and its monodisperse counterpart looks
more pronounced when considering the heat of phase change
Q* fQ* =Du* +p*Ds1/r*d, whereD refers to the change upon
phase transitiong. The distributions of particles in the coex-
isting polydisperse phases were found to be significantly dif-
ferent: the larger particles predominantly belong to the
denser phase, and this causes an enlargement in the potential
energy change associated with the phase transition. In our
case, the distribution of the denser phase generally resembles
the distribution of the parent phase; however, the closer we
are to the critical temperature, the more the distribution of
the denser phase differs from the parent distribution. This is
the reason the estimated cloud curve, the distribution of
which is by definition equal to the parent distribution, may
cross the critical orthobaric density curve even in the high-
density side.

It should be noted that while in the monodisperse phases
practically no particle aggregation occurs, approximately 1%

TABLE I. Estimated critical properties for the monodisperse
fluid f13g and for the polydisperse fluidsin both cases,m̄* =1d. The
numbers in parentheses represent the estimated uncertainties in the
last digit.

H*

Monodisperse fluid Polydisperse fluid

Tc
* rc

* Tc
* rc

*

0 1.151s5d 0.229s4d 1.196s5d 0.227s3d
1 1.170s5d 0.227s4d 1.223s5d 0.223s4d

FIG. 2. Coexistence densities for the monodisperse fluidf13g
scircles and dotted linesd and for the polydisperse fluid for which
the density of the parent phase is identical to the critical density
ssquares and dashed linesd. In both cases,m̄* =1. Open symbols and
symbols filled withs1d represent results obtained atH* =0 and 1,
respectively. The continuous lines are the estimated cloud curves:
the two inner lines correspond to the results obtained in the absence
of the external field. The inset contains the heat of phase change as
a function of the coexistence pressure. State points where heat ca-
pacities were calculated from one-phase simulations are marked
with crosses.

FIG. 3. Configurational heat capacities for the monodisperse
scirclesd and for the polydisperse fluidssquaresd. Open symbols and
symbols filled withs1d represent results obtained atH* =0 and 1,
respectively. Points corresponding toT* =1.00, 1.05, and 1.10 are
connected by dotted, continuous, and dashed lines, respectively.

FIG. 4. Magnetizations for the monodispersescirclesd and for
the polydisperse fluidssquaresd at H* =1. Points corresponding to
T* =1.00, 1.05, and 1.10 are connected by dotted, continuous, and
dashed lines, respectively. Note that the two parts of the figure
differ in the scale of they axis.
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of the particles of the high-density polydisperse phases can
be found in clusters. These clusters were defined on the basis
of the pair energies of the interacting particlesf26g: two par-
ticles were considered to be bound if their potential energy is
less than 75% of their contact energy in perfect coalignment.
Although the clusters in the polydisperse phases are prima-
rily flexible dimers and trimers, these might affect the fluid
properties, especially the magnetic propertiesf27g, to a
greater extent. Nevertheless, the aggregation does not seem
significant in our polydisperse system; moreover, as the
amount of clusters reduces with decreasingr, the influence
of clustering becomes completely negligible in the low-
density side.

The estimated critical properties are shown in Table I.Tc
*

is slightly greater in the polydisperse system than in the cor-
responding monodisperse one butrc

* is roughly the same in
both systems. According to the principle of corresponding
states, a reduction with the critical properties would also
make sense; for the polydisperse system, this will lower the
reduced temperatures by approximately 4% as compared to
those of the monodisperse system.

The locations of state points where the heat capacities
were determined are indicated in Fig. 2sthe selected tem-
peratures areT* =1.00, 1.05, and 1.10d. Here, in the inset we
plotted the heat of phase change as a function of the coex-
istence pressuresinstead of the temperatured to present our
results also for the pressure. So this “composite” figure also
reveals that, at the three selected temperatures, the coexist-
ence pressure is roughly the same for the polydisperse sys-
tem and for its monodisperse counterpart. For the heat ca-
pacity calculations the densities were chosen near the
orthobaric density curves. Some points areinside the
orthobaric density or the cloud curves, but on the basis of the
increasing tendency of the pressure with the increasing den-
sity obtained from one-phase simulations at constant tem-
perature, it was verified for both systems that all of these
points areoutsidethe spinodal curvesswhere the phase first
becomes unstable to local density fluctuationsd.

The heat capacity results from one-phase simulations are
presented in Fig. 3. It is seen that the configurational heat
capacity reduces on passing fromsthe vicinity ofd the two-
phase region toward the interior of the single phase regions.
The most striking feature of this figure is the marked contrast
between the results obtained in the absence and in the pres-
ence of the external field. Under the influence of the external
field, the relative increase in the temperature derivative of the
potential energy may be as large as 60%. The absolute in-
crease was found to be approximately equivalent to the low-
ering in the potential energysin reduced units, according to
the definitions given in Sec. II Cd; this is larger in the high-
density side, which reflects the fact that the interaction of a
system of dipoles with the external field is proportional to
the densityf14,27g.

In the high-density side no clear distinction can be ob-
served between the results for the polydisperse system and
those of its monodisperse counterpart, except forT* =1.10,
where the monodisperse system possesses somewhat greater
cV

* . By contrast, in the low-density side the heat capacity for
the polydisperse system consistently exceeds the correspond-
ing value for the monodisperse system. There are two densi-

ties in the low-density sidesr* =0.04 and 0.05d where the
results obtained at different temperatures can be compared.
Here, we find that the heat capacity of the monodisperse
system atT* =1.00 is approximately equal to that of the poly-
disperse system atT* =1.05, and the same holds for the re-
sults atT* =1.05 and 1.10, which means that the correspond-
ing cV

* data are approximately equal for the two systems at
the sameT* /Tc

* andr* /rc
* srecall thatTc

* is about 4% higher
in the polydisperse systemd. This rule does not work for the
high-density side, where such a comparison reveals that, at
the sameT* /Tc

* and r* /rc
* , the monodisperse system pos-

sesses greatercV
* . The fact that no polydispersity-induced in-

crease in this caloric property was found here is somewhat
surprising, since the potential energy is consistently 5–10 %
lower in the polydisperse systemsthese results are not shown
hered and the two systems are quite dissimilar also in mag-
netic character. The latter is illustrated in Fig. 4, where the
calculated equilibrium magnetization is shown in the pres-
ence of the external magnetic fieldsM* is practically zero in
the absence of the external field in all casesd. As can be seen,
M* is significantly greater in the polydisperse system than in
the monodisperse one, especially in the high-density side,
which suggests that the contribution of the particles with
magnetic moments larger than the mean magnetic moment to
the system’s properties is crucial.

In summary, we considered the effect of polydispersity on
the phase behavior and the isochoric heat capacity data of a
model ferrofluid with reduced polydispersity. The obtained
fluid-fluid equilibrium curves reflect the dissimilarity in com-
position and thus in structure between the polydisperse sys-
tem and its monodisperse counterpart. At the same time, the
heat capacity was found to be rather insensitive to the com-
position variations in the denser phase. Nevertheless, the cal-
culations provide evidence of the large influence of the ex-
ternal magnetic field on the temperature derivative of the
potential energy of our dipolar systems.

The proposed technique has proved to be a promising tool
for simulating systems with fixed polydispersity. It should be
stressed that its implementation is simple and straightfor-
ward, and requires only a minor modification of the original
semigrand ensemble procedure. In comparison with the more
sophisticated grand canonical approachf19,28g, where a self-
consistent iterative determination of the chemical potential
distribution sconjugate to the composition distributiond is
performed, the new technique works with fixed overall num-
ber density, which makes it easier to handle the system in
one-phase simulations. Notwithstanding these advantages,
the work presented here was computationally demanding,
because rather long calculations are needed to sample appro-
priately the low-probability particle size regions.
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